
Particularités des EFR pédiatriques

Nicole Beydon
Hôpital Armand Trousseau
Paris

A partir de quel âge peut-on réaliser des EFR ?

Naissance

2/3 ans

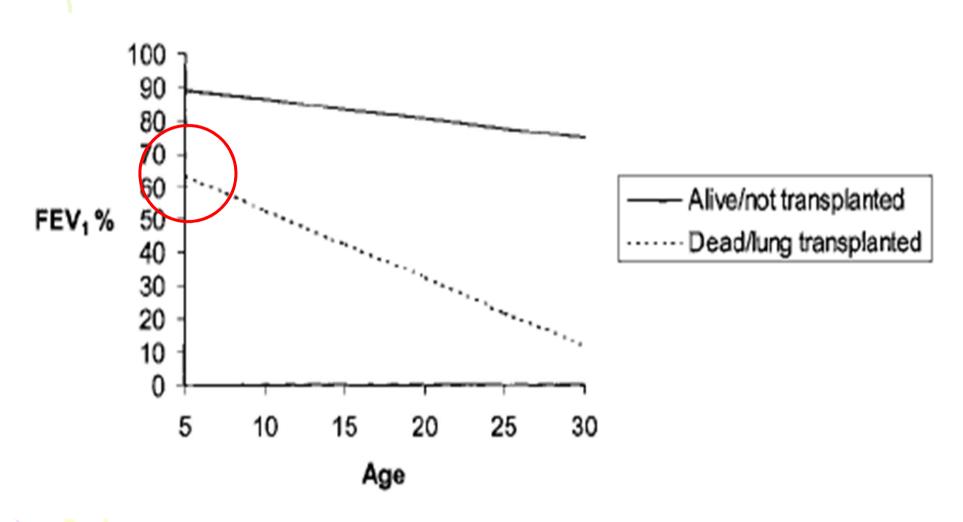
5/6 ans

• 8/10 ans

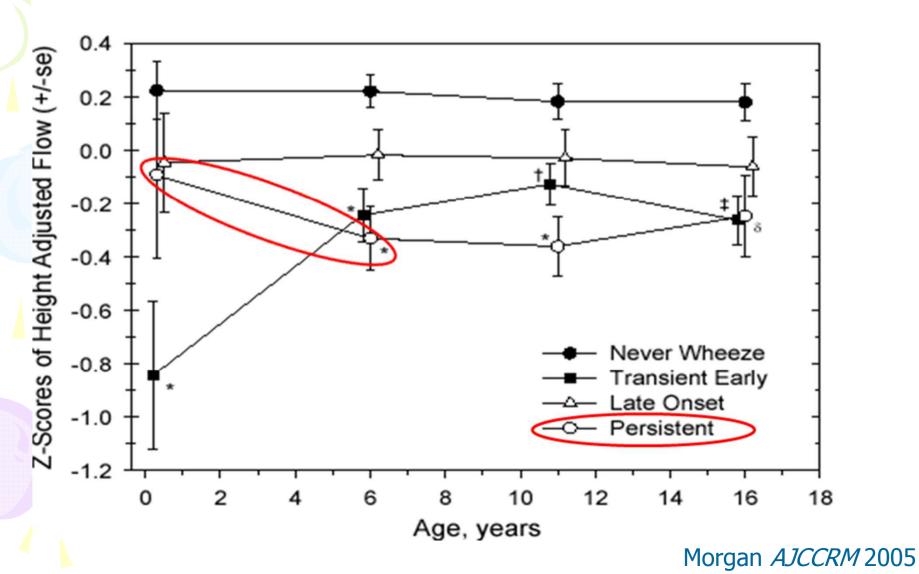
> 8/10 anş

Sommeil (sédation> 2 mois), expérience longue à acquérir, présence d'un médecin obligatoire, examen long, normes discutées et matériel-dépendantes !! Place, matériel onéreux

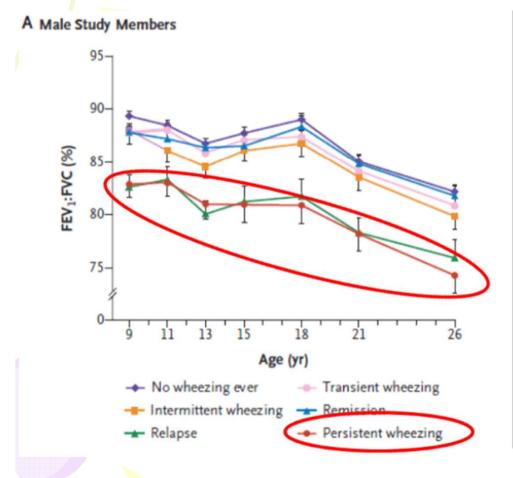
Enfant éveillé, assis droit, respire à travers embout buccal + pince-nez sans bouger ni parler = **coopération minimale**

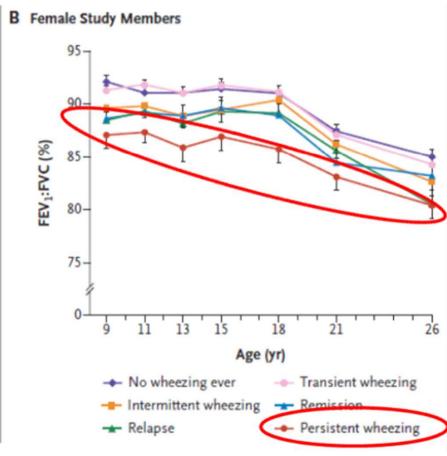

Technique « adulte » utilisables avec **variabilité** interindividuelle et intra-individuelle plus grande

Technique « adulte » utilisables comme chez l'adulte


Pourquoi explorer les jeunes enfants?

- Temps pendant lequel la maladie peut progresser « silencieusement »
- Période durant laquelle une intervention pourrait éviter des atteintes irréversibles
- Obtenir des critères objectifs
 - De gravité et d'évolution de la maladie
 - d'efficacité des traitements
 - en recherche
 - en clinique


Mucoviscidose, valeur prédictive du VEMS à 5 ans



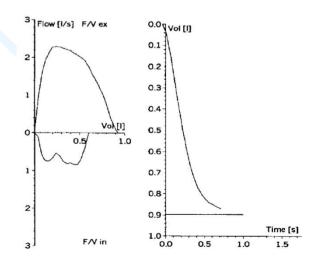
Atteinte fonctionnelle et phénotype (âge de début) des sifflements entre 0 et 16 ans

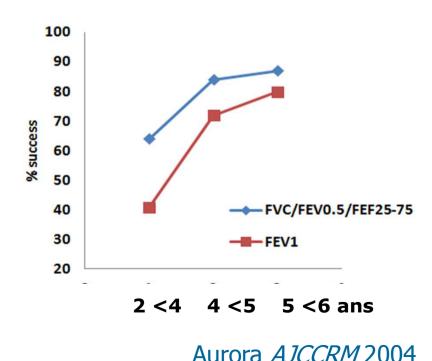
Persistance de l'atteinte fonctionnelle ans selon le phénotype entre 9 et 26

Utilité des EFR chez l'enfant

- Confirmer / exclure un diagnostic et objectiver sa gravité
 - Base, réactivité bronchique (BDR, tests de provocation)
 - Ponctuellement (pré-op scoliose)
- Suivre l'évolution de la maladie
 - Avec ou sans traitement de fond (~1/an)
- Evaluer l'effet des traitements
 - > 2 mois après modification (saison)
- Evaluer le prognostic
 - "tracking" de la fonction respiratoire asthme

Contraintes pédiatriques


- Matériel adapté à l'âge (dimensions)
 - Embout buccal
 - Filtre anti-microbien



- Techniques adaptées à la maturité
 - Techniques en volume courant
- Normes adaptées à l'âge/taille avec la technique utilisée
- Locaux accueillants si possible # de ceux accueillant des adultes
- Personnel entraîné, motivé, patient
- Du temps...

Spirométrie

- Les jeunes enfants ne peuvent remplir les critères adultes avant l'âge de 8 ans (ATS/ERS Miller ERJ 2005)
- Reproductiblité médiocre jusqu'à 10 ans
- Succès/âge
- Incitatifs facultatifs

Spirométrie, technique

 Enfants scolaires / adolescents / adultes Enfants préscolaires

ATS/ERS AJRCCM 2007

ATS/ERS ERJ 2005

Début du test

VBE <5%CVF ou 150mL (le + grand) <12,5%CVF ou 80mL

Montée rapide jusqu'au DEP, pas de toux...

Expiration

Forme triangulaire

En cloche

Fin du test

Expiration ≥6s (3s <10 ans)

Expi ≥1s (VEMS) ou <1s

Reproductibilité

CVF & VEMS <150mL d'écart

<100mL ou 10% (le + grand)

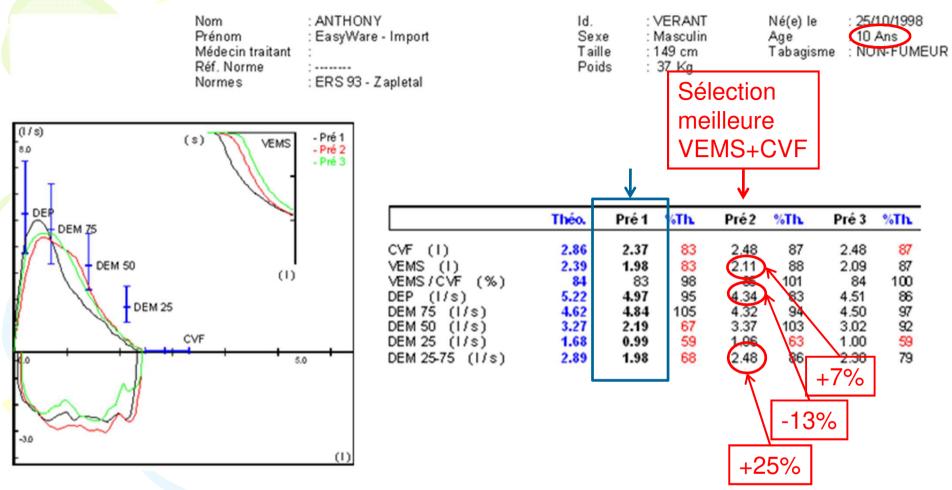
Nombre max d'essais

Maximum 8 essais

Pas de nombre max

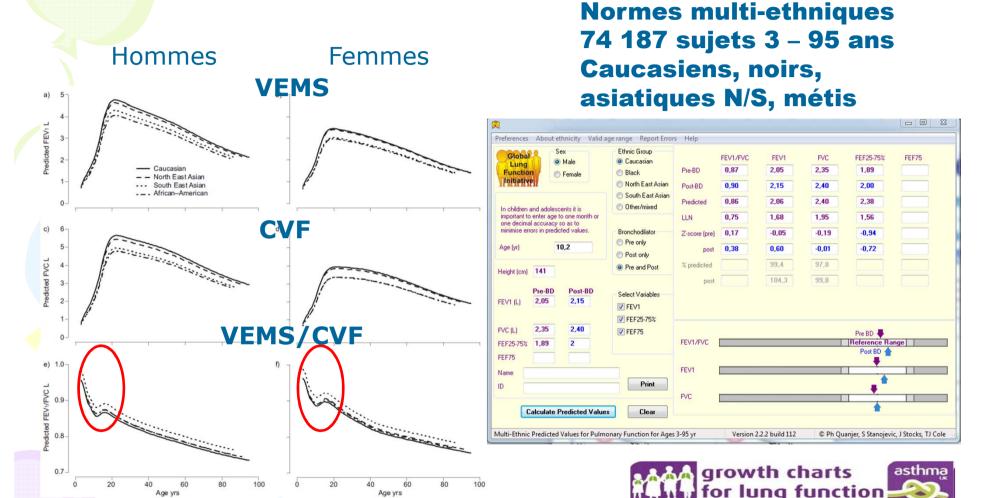
Résultats

Meilleurs d'au moins 2 courbes repro


Meilleurs ≥ 1 courbe(s)

DEF courbe avec meilleure VEMS+CVF

Réversibilité


CVF et/ou VEMS > 12%B ET > 200m ? GINA > 2015 5-11 ans > 12%Prédit,

VEMS>15%B, DEMM>55%B (Borrego ADC 2013)

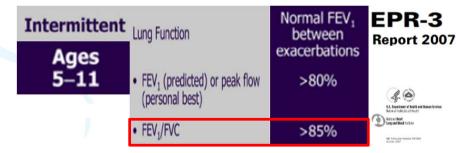
- Inspection des courbes
- Critères de début et de fin
- Séléction de la courbe de meilleure technique

Spirométrie, interprétation

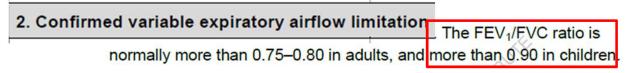
Z-SCOTE The Asthma UK Collaborative Initiative to Develop Reliable Reference Ranges for Lung Function in Young Children

90% population entre -/+ 1,645 95% population entre -/+ 1,96

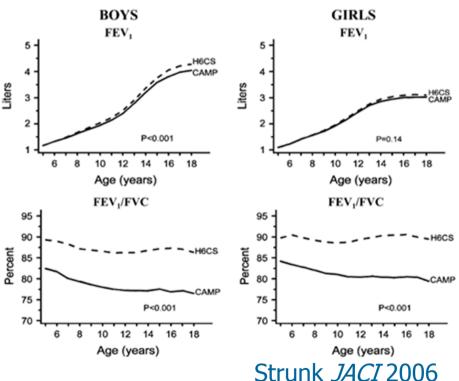
www.lungfunction.org


Quanjer *ERJ* 2012

Limite Inférieure de la normale VEMS/CVF


VEMS/CVF LIN = -1,64 z-sc	Filles	Garçons
100 cm	85	83
110 cm	83	80
120 cm	81	78
130 cm	79	77
140 cm Quanjer <i>ERJ</i> 2012	78	76

< 140 cm LIN VEMS/CVF ~ 0,80 puis décroît avec un rebond à la puberté


Box 1-2. Diagnostic criteria for asthma in adults, adolescents, and children 6-11 years

Chez l'enfant asthmatique VEMS et VEMS/CVF souvent dans les limites de la normale

Characteristic*	asthme léger à modéré CAMP	sujets sains H6CS
No. of children	1041	5415
No. of examinations	22,137	28,562
Mean age (y) at initial examination†	8.9 ± 2.1	8.2 ± 1.7
Mean age (y) at examination†	12.4 ± 3.2	11.9 ± 3.4
FEV ₁ (% of predicted)‡	97.2 ± 14.2	101.0 ± 12.5
FEV ₁ /FVC (% of predicted)	\$9.9 ± 9.3	99.6 ± 6.6

Enfants asthmatiques

- VEMS normal
- VEMS/CVF bas ou LIN
- Cotation de l'obstruction sur l'altération du VEMS non adaptée

Résistance respiratoire chez l'adulte

Diaphragme

Bouche +20-30%
Larynx
0.05 kPa.L⁻¹.s

Trachée Bronches 0.08 kPa.L⁻¹.s

Alvéoles
Tissu pulmonaire
0.02 kPa.L⁻¹.s
Paroi thoracique
0.05 kPa.L⁻¹.s

RVAS

RVAI

PLETHYSMOGRAPHIE, Raw

TECHNIQUES
BALLONNET OESOPHAGIEN

INTERRUPTION DEBIT, Rint OSCILLATIONS FORCES, Rrs

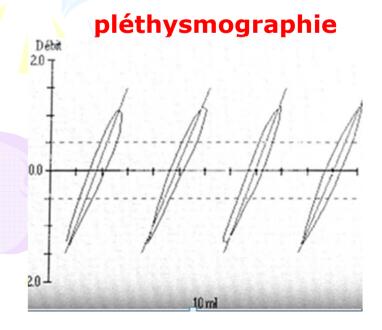
TOTAL 0.2 kPa.L⁻¹.s

Intérêt de la mesure de la résistance

Pression dans les voies aérienens

Débit dans un tube

- R proportionnel à 8ηl/ΔΡπ⁴
 - o Si r/2 alors R*16!!

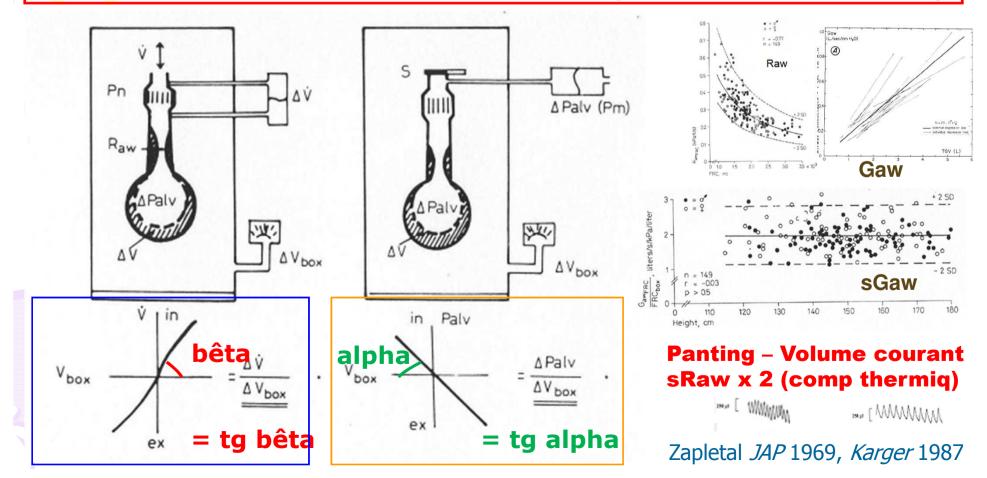

Mesures de résistance

- Réaliser avant l'expiration forcée
- Enfant assis, dos droit, cou position neutre, joues maintenues, pince-nez
- Pas de fuite autour de l'embout buccal, pas de mouvement ou phonation pendant la mesure
- Espace mort ≤2 mL/kg
- Résistance basse du filtre anti-bactérien
- Capteur capable de mesurer des pressions hautes (2kPa.s.L⁻¹)

Mesures de résistance $R = \Delta P/V'$

Voies aériennes

Système respiratoire


Oscillations forcées

Rrs Pmax (hPa.s.l-1) Pint_F Pint Slope P25 R₁₆-Ppre T₀ T30 T70 T100 12 20 28 Frequency (Hz)

Interruption débit

Pléthysmographie loi Boyle-Mariott's PV = Cst

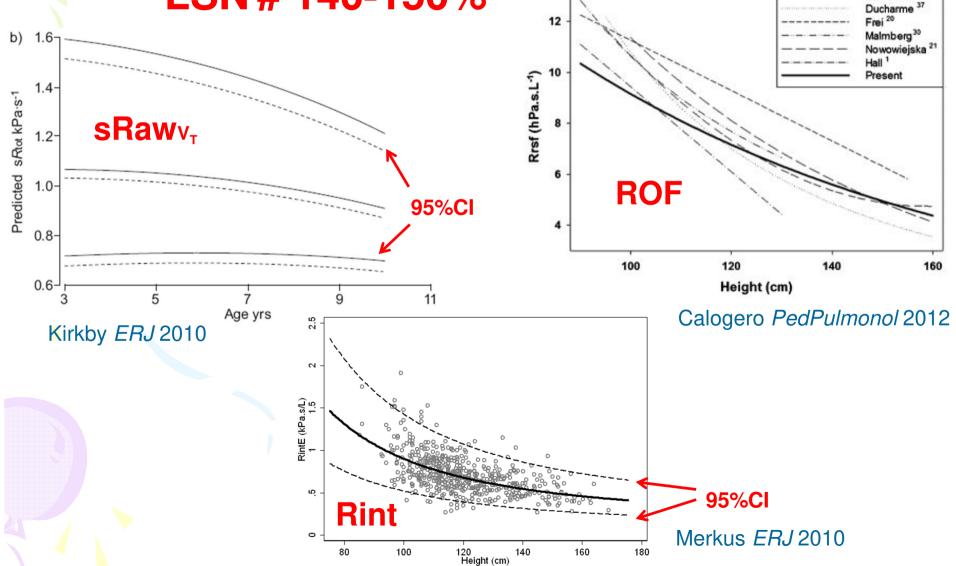
- Raw = (ΔPalv/ΔV') = tg alpha∗ctg bêta
- $VGT = (\Delta V / \Delta Palv)*(P_B-P_{H2O}) = ctg alpha*(P_B-P_{H2O})$
- Raw*VGT = sRaw = $(\Delta V/\Delta V')_*(P_B-P_{H2O})$ = ctg bêta* (P_B-P_{H2O})

• sRaw

			4.00		THEOI SOTT
Age (years)	No. testet	No. completed	(%)	墓	
2	28	16	57		au alle
3	31	20	65	tros	
4	34	28	82		
5	21	21	100		
6	22	21	95		
7	15	15	100	1	
	151	121			
Klug B, Bisg	gaard H. <i>Pediatr Pulmoi</i>	nol 1998;25:322–331			

- Faisabilité
- CoV 8-11%
- En cas d'obstruction sRaw augmente
 - Augmentation Raw
 - et/ou augmentation VGT

(Bisgaard *Chest* 2005)


Résistance du système respiratoire

- Résistance par interruption du debit Rint
- Technique des oscillations forcées (FOT), impulse oscillométrie (IOS)
- Débit et pression mesurés à la bouche
- Recommendations
 - Faisabilité ≥ 3 ans > 90%, 2-3 ans ~50%
 - → CoV Rint ~12%, ROF <10%
- Le volume n'entre pas directement en compte dans la mesure

Normes Résistance

Duiverman 39

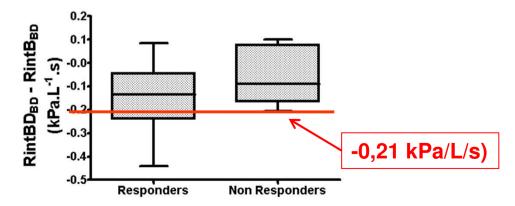
Obstrués z-score > 2 LSN # 140-150%

En résumé, la résistance

- Large distribution inter individuelle
 - Chevauchement valeurs sains obstrués
 - Détecte plus souvent une bronchoréactivité anormale qu'un valeur de base anormale
- Valeurs anormales > 140-150% ou > 2 z-score
- Réversibilité
 - **-** # -40%
 - -0,25 kPa.L⁻¹.s pour Rrs enfants < 130 cm
- Provocation
 - # + 35 40% (++ toujours autre technique tcPO₂,SpO₂)

Julien, 4 ans

 Toux chronique plutôt hivernale et majorée par l'effort, pas de traitement de fond


102cm	Base	(%N, z so	e) BD	(%N, z sc)	BD
CRF _{He}	0,56	98			
	(L)				
Rrs	1,10	127%	0,78	90%	- 36% N
	(kPa.L ⁻¹ .s)	1,04	(kPa.s.L ⁻¹)	-0,43	- 0.30
					kPa.s.L ⁻¹
SpO ₂ (%)	98				

BDR mesurée avec Rint et HRB

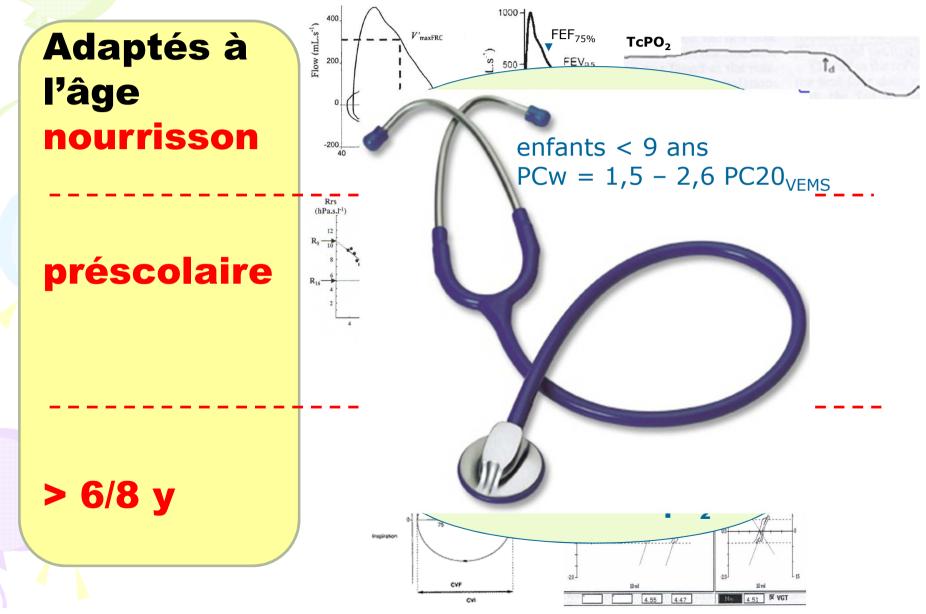

- 38 enfants 5 ans (de 2,8 à 6,4) toux chronique
- BDR 4 mois avant test à la métacholine
- 24 HRB+ 14 HRB-

Figure 1

Réversibilité de la Rrs en faveur d'une HRB (traitement d'épreuve)

Test de provocation Techniques et critères

Interprétation du test

- Préscolaires
- Tests pharmacologiques directs
 - TcPO₂ -20% avec TcPCO₂ stable
 - Résistance >+ 35%
 - VEMS -20% moins ??
 - VE_{0.5} -25% ?
 - **SpO₂** -5 points ou < 91%, -3 points + Rint
 - Tests indirects inhalés (AMP)
 - TcPO₂ -15%
 - **SpO₂** -5 points

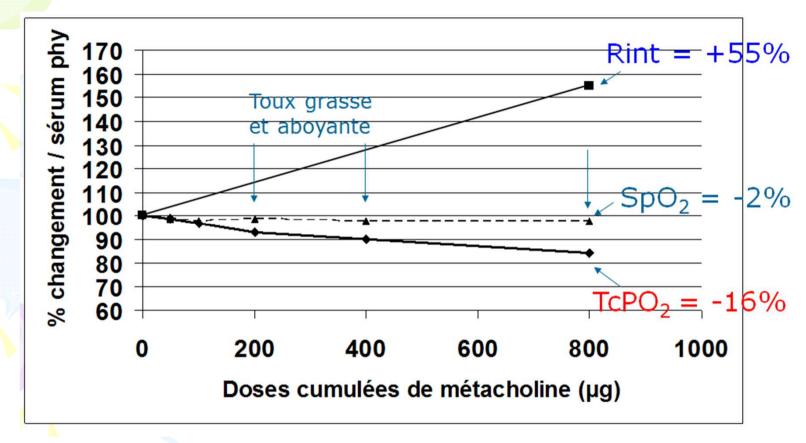
(Avital JPed 1995, Joseph-Bowen AJRCCM 2004, Beydon AJRCCM 2007, Vilozni PedPulm 2009, Bakirtas PedPulm 2007, Kim PedPulm ActaPaed 2006, ClinExpAll 2007, Beydon ERJ Open Res 2015

Interprétation du test

- Scolaires et adolescents
 - Tests pharmacologiques directs
 - VEMS -20%
 - Résistance pléthysmographique +80%
 - TcPO₂ -20% avec TcPCO₂ stable
 - Tests physiques
 - VEMS -10% (labo) or -15% (hors labo)
 - VEMS -10% ET DEF_{75-25%} -26%
 - Tests indirects inhalés (mannitol, AMP...)
 - VEMS -15%

(ATS AJRCCM 1999, Holmgren Acta Paed 1996, Custovic Chest 1994, Barben PedPulm2011)

Cas clinique: Florinda 4 ans


- Pas d'antécédents personnels ou familiaux
- Toux spasmodique depuis $1^{1/2}$ an, grasse et parfois sèche
- Traitement Sérétide₁₂₅ 1 bX2/j semi-efficace, pas de sibilants
- Radiographie thoracique: syndrome bronchique
- Bilan allergologique négatif

Florinda 4 ans

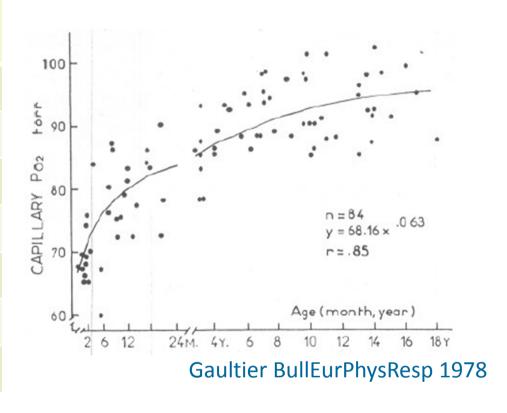
Base (%N, z-sc) BD (%N, z-sc) BD

Rrs		85%	77%	- 8%
		-0,61	-1,01	- 0.06
				kPa.s.L ⁻¹
SpO ₂	(%)	98		

Florinda 4 ans Test de provocation bronchique

Ne jamais faire un test HRB sur la seule mesure de résistance (faux-positifs, faux-négatifs)
Associer au minimum une mesure SpO₂

Si augmentation isolée de la résistance faire mesure post-seuil Si présence de signes clinique (hors toux) + baisse SpO₂ 3 points, même si résistance non augmentée, arrêter le test

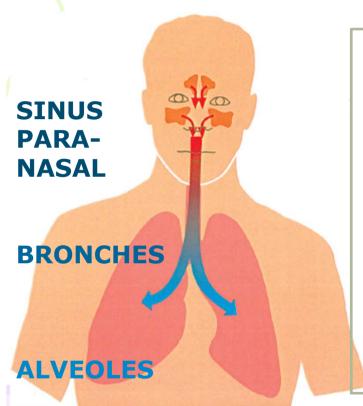

HRB sensibilité et spécificité dans l'asthme de l'enfant

	Course libre	EHCA	Méta	Histam
sensibilité	35%	30.7%	47%	52 %
spécificité	97%	88.2%	97%	90%

- Meilleur test pour exclure que pour affirmer diagnostic d'asthme
- Positivité différente selon test in/direct
- Jeune enfant, test direct seulement réalisable
- Recherche de bronchospasme d'effort
 - 50% des cas, bronchospasme survient avant la fin de l'effort

Valeurs normales PaO₂cap, PCO₂

Age	PaO ₂ cap mmHg (SD)
NN – 2 r	mois 70 (7.74)
2-10 mo	is 75 (7.74)
10-24 m	ois 80 (7.74)
2-4 ans	85 (5.5)
4-7 ans	88 (5.5)
7-10 ans	92 (5.16)
>10 ans	95 (5.16)



 $PaCO_2 = PaCO_2 cap = adultes = enfants = 35 - 45 mmHg (36-44)$ 50 mmHg peut être obtenu par l'apnée

PvCO₂ =PaCO₂+5 mmHg

< 45 mmHg 100% sensibilité 57% spécificité pour éliminer une hypercapnie pH = 7.36 - 7.45

Monoxide d'azote

SAINS

Elevé 500-1500ppb

Bas < 15-25ppb

Très bas <8ppb

ASTHME

Elevé Très élevé (sinusitis)

Elevé si allergie Diminue avec CSI

Parfois élevé

CF-DCP

Bas-TrèsB

Bas

?

Augmente la tension partielle en oxygène

Diminue les résistances vasculaires pulmonaires

Modulation immunologique, pro-inflammatoire, anti-bactérien

NO expiré, FeNO

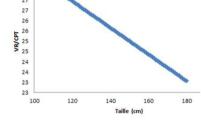
Expiration contre résistance (5-10 cm H_2O), fermeture du palais mou, débit constant (0.05L.s-1 \pm 10%) reflète la production bronchique de NO

Durée mesure

≥4s si <12 ans et ≥6s si >12 ans Plateau

≥2s si <12 ans et ≥4s si >12 ans Moyenne 2 mesures à 10% (1 ppb si<10 ppb) (ATS/ERS AJRCCM 2005)

- FeNO dépend
 - De l'âge < 12 ans
 - De la taille et de l'âge >12 ans
- Valeur FeNO chez l'enfant < 12 ans
 - Basse < 20 ppb
 - Élevée > 35 ppb
 - Intermédiaires 20-35 ppb
- > 12 ans; basse < 25 élevée > 50 ppb

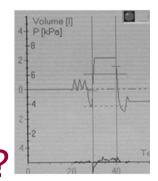

(See Chest 2013, Dweik AJRCCM 2011)

Autres techniques

Volumes

- CRF dilution quand pléthysmographie impossible = n'évalue pas les gaz piégés
- VR/CPT plus élevé chez le jeune enfant

(Zapletal *Karger* 1987)



- Pmax
 - Normes pour l'âge (Pe_{MAX}) et le poids (Pi_{MAX})
 - Sniff-test > 6ans, normes garçons selon âge

(Wilson *Thorax* 1984, Stefanutti *AJRCCM* 1999)

DLCO

- Technique d'apnée : diminuer le volume rejeté, le temps d'apnée (8s)
- Technique en volume courant: normes? V_E?

